116 research outputs found

    Arsenic trioxide exerts synergistic effects with cisplatin on non-small cell lung cancer cells via apoptosis induction

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite multidisciplinary treatment, lung cancer remains a highly lethal disease due to poor response to chemotherapy. The identification of therapeutic agents with synergistic effects with traditional drugs is an alternative for lung cancer therapy. In this study, the synergistic effects of arsenic trioxide (As<sub>2</sub>O<sub>3</sub>) with cisplatin (DDP) on A549 and H460 non-small cell lung cancer (NSCLC) cells were explored.</p> <p>Methods</p> <p>A549 and H460 human lung cancer cells were treated with As<sub>2</sub>O<sub>3 </sub>and/or DDP. Cell growth curves, cell proliferation, cell cycle, and apoptosis of human cancer cell lines were determined by the 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide (MTT) method, clonogenic assay, and flow cytometry (FCM). Apoptosis was further assessed by TUNEL staining. Cell cycle and apoptosis related protein p21, cyclin D1, Bcl-2, bax, clusterin, and caspase-3 were detected by western blot.</p> <p>Results</p> <p>MTT and clonogenic assay showed As<sub>2</sub>O<sub>3 </sub>within 10<sup>-2 </sup>μM to 10 μM exerted inhibition on the proliferation of NSCLC cells, and 2.5 μM As<sub>2</sub>O<sub>3 </sub>exerted synergistic inhibition on proliferation with 3 μg/ml DDP. The combination indices (CI) for A549 and H460 were 0.5 and 0.6, respectively, as confirmed by the synergism of As<sub>2</sub>O<sub>3 </sub>with DDP. FCM showed As<sub>2</sub>O<sub>3 </sub>did not affect the cell cycle. The G0/G1 fraction ranged from 57% to 62% for controlled A549 cells and cells treated with As<sub>2</sub>O<sub>3 </sub>and/or DDP. The G0/G1 fraction ranged from 37% to 42% for controlled H460 cells and cells treated with As<sub>2</sub>O<sub>3 </sub>and/or DDP. FCM and TUNEL staining illustrated that the combination of As<sub>2</sub>O<sub>3 </sub>and DDP provoked synergistic effects on apoptosis induction based on the analysis of the apoptosis index. Western blotting revealed that the expression of cell cycle related protein p21 and cyclin D1 were not affected by the treatments, whereas apoptosis related protein bax, Bcl-2, and clusterin were significantly regulated by As<sub>2</sub>O<sub>3 </sub>and/or DDP treatments compared with controls. The expression of caspase-3 in cells treated with the combination of As<sub>2</sub>O<sub>3 </sub>and DDP did not differ from that in cells treated with a single agent.</p> <p>Conclusion</p> <p>As<sub>2</sub>O<sub>3 </sub>exerted synergistic effects with DDP on NSCLC cells, and the synergistic effects were partly due to the induction of caspase-independent apoptosis.</p

    Erroneous attribution of relevant transcription factor binding sites despite successful prediction of cis-regulatory modules

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Cis</it>-regulatory modules are bound by transcription factors to regulate gene expression. Characterizing these DNA sequences is central to understanding gene regulatory networks and gaining insight into mechanisms of transcriptional regulation, but genome-scale regulatory module discovery remains a challenge. One popular approach is to scan the genome for clusters of transcription factor binding sites, especially those conserved in related species. When such approaches are successful, it is typically assumed that the activity of the modules is mediated by the identified binding sites and their cognate transcription factors. However, the validity of this assumption is often not assessed.</p> <p>Results</p> <p>We successfully predicted five new <it>cis</it>-regulatory modules by combining binding site identification with sequence conservation and compared these to unsuccessful predictions from a related approach not utilizing sequence conservation. Despite greatly improved predictive success, the positive set had similar degrees of sequence and binding site conservation as the negative set. We explored the reasons for this by mutagenizing putative binding sites in three <it>cis</it>-regulatory modules. A large proportion of the tested sites had little or no demonstrable role in mediating regulatory element activity. Examination of loss-of-function mutants also showed that some transcription factors supposedly binding to the modules are not required for their function.</p> <p>Conclusions</p> <p>Our results raise important questions about interpreting regulatory module predictions obtained by finding clusters of conserved binding sites. Attribution of function to these sites and their cognate transcription factors may be incorrect even when modules are successfully identified. Our study underscores the importance of empirical validation of computational results even when these results are in line with expectation.</p

    An investigation of the diversity of strains of enteroaggregative Escherichia coli isolated from cases associated with a large multi-pathogen foodborne outbreak in the UK

    Get PDF
    Following a large outbreak of foodborne gastrointestinal (GI) disease, a multiplex PCR approach was used retrospectively to investigate faecal specimens from 88 of the 413 reported cases. Gene targets from a range of bacterial GI pathogens were detected, including Salmonella species, Shigella species and Shiga toxin-producing Escherichia coli, with the majority (75%) of faecal specimens being PCR positive for aggR associated with the Enteroaggregative E. coli (EAEC) group. The 20 isolates of EAEC recovered from the outbreak specimens exhibited a range of serotypes, the most frequent being O104:H4 and O131:H27. None of the EAEC isolates had the Shiga toxin (stx) genes. Multilocus sequence typing and single nucleotide polymorphism analysis of the core genome confirmed the diverse phylogeny of the strains. The analysis also revealed a close phylogenetic relationship between the EAEC O104:H4 strains in this outbreak and the strain of E. coli O104:H4 associated with a large outbreak of haemolytic ureamic syndrome in Germany in 2011. Further analysis of the EAEC plasmids, encoding the key enteroaggregative virulence genes, showed diversity with respect to FIB/FII type, gene content and genomic architecture. Known EAEC virulence genes, such as aggR, aat and aap, were present in all but one of the strains. A variety of fimbrial genes were observed, including genes encoding all five known fimbrial types, AAF/1 to AAF/V. The AAI operon was present in its entirety in 15 of the EAEC strains, absent in three and present, but incomplete, in two isolates. EAEC is known to be a diverse pathotype and this study demonstrates that a high level of diversity in strains recovered from cases associated with a single outbreak. Although the EAEC in this study did not carry the stx genes, this outbreak provides further evidence of the pathogenic potential of the EAEC O104:H4 serotype

    DNp73 improves generation efficiency of human induced pluripotent stem cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent studies have found that p53 and its' associated cell cycle pathways are major inhibitors of human induced pluripotent stem (iPS) cell generation. In the same family as p53 is p73, which shares sequence similarities with p53. However, p73 also has distinct properties of its own, such as two alternative promoters to express transactivation of p73 (TAp73) and N terminal deleted p73 (DNp73). Functionally, TAp73 acts similarly to p53 in tumor suppression. However, DNp73, on the other hand acts as an oncogene to suppress p53 and p73 induced apoptosis. Therefore, how can p73 have opposing roles in human iPS cell generation?</p> <p>Results</p> <p>Transcription factors, Oct4, Sox2, Klf4 and cMyc (4TF, Yamanaka factors) are used as basal conditions to generate iPS cells. In addition, the factor of DNp73(actually alpha splicing DNp73, DNp73α) is used to generate iPS cells. The experiment found that the addition of DNp73 gene increases human iPS cell generation efficiency by 12.6 folds in comparison to human fibroblast cells transduced with only the basal conditions. Also, iPS cells generated with DNp73 expression are more resistant to <it>in vitro </it>and <it>in vivo </it>differentiation.</p> <p>Conclusions</p> <p>This study found DNp73, a family member of p53, is also involved in the human iPS cell generation. Specifically, that the involvement of DNp73 generates iPS cells that are more resistant to <it>in vitro </it>and <it>in vivo </it>differentiation. Therefore, this data may prove to be useful in future developmental studies and cancer researches.</p

    Identifying Cis-Regulatory Sequences by Word Profile Similarity

    Get PDF
    Recognizing regulatory sequences in genomes is a continuing challenge, despite a wealth of available genomic data and a growing number of experimentally validated examples.We discuss here a simple approach to search for regulatory sequences based on the compositional similarity of genomic regions and known cis-regulatory sequences. This method, which is not limited to searching for predefined motifs, recovers sequences known to be under similar regulatory control. The words shared by the recovered sequences often correspond to known binding sites. Furthermore, we show that although local word profile clustering is predictive for the regulatory sequences involved in blastoderm segmentation, local dissimilarity is a more universal feature of known regulatory sequences in Drosophila.Our method leverages sequence motifs within a known regulatory sequence to identify co-regulated sequences without explicitly defining binding sites. We also show that regulatory sequences can be distinguished from surrounding sequences by local sequence dissimilarity, a novel feature in identifying regulatory sequences across a genome. Source code for WPH-finder is available for download at http://rana.lbl.gov/downloads/wph.tar.gz

    Climate Change, Foodborne Pathogens, and Illness in Higher Income Countries

    Get PDF
    Purpose of review: We present a review of the likely consequences of climate change for foodborne pathogens and associated human illness in higher income countries. Recent findings: The relationships between climate and food are complex and hence the impacts of climate change uncertain. This makes it difficult to know which foodborne pathogens will be most affected, what the specific effects will be, and on what timescales changes might occur. Hence, a focus upon current capacity and adaptation potential against foodborne pathogens is essential. We highlight a number of developments that may enhance preparedness for climate change. These include: • Adoption of novel surveillance methods, such as syndromic methods, to speed up detection and increase the fidelity of intervention in foodborne outbreaks • Genotype based approaches to surveillance of food pathogens to enhance spatio-temporal resolution in tracing and tracking of illness • Ever increasing integration of plant, animal and human surveillance systems, one-health, to maximize potential for identifying threats • Increased commitment to cross-border (global) information initiatives (including big data) • Improved clarity regarding the governance of complex societal issues such as the conflict between food safety and food waste • Strong user centric (social) communications strategies to engage diverse stakeholder groups Summary: The impact of climate change upon foodborne pathogens and associated illness is uncertain. This emphasises the need to enhance current capacity and adaptation potential against foodborne illness. A range of developments are explored in this paper to enhance preparedness

    Simple Shared Motifs (SSM) in conserved region of promoters: a new approach to identify co-regulation patterns

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Regulation of gene expression plays a pivotal role in cellular functions. However, understanding the dynamics of transcription remains a challenging task. A host of computational approaches have been developed to identify regulatory motifs, mainly based on the recognition of DNA sequences for transcription factor binding sites. Recent integration of additional data from genomic analyses or phylogenetic footprinting has significantly improved these methods.</p> <p>Results</p> <p>Here, we propose a different approach based on the compilation of Simple Shared Motifs (SSM), groups of sequences defined by their length and similarity and present in conserved sequences of gene promoters. We developed an original algorithm to search and count SSM in pairs of genes. An exceptional number of SSM is considered as a common regulatory pattern. The SSM approach is applied to a sample set of genes and validated using functional gene-set enrichment analyses. We demonstrate that the SSM approach selects genes that are over-represented in specific biological categories (Ontology and Pathways) and are enriched in co-expressed genes. Finally we show that genes co-expressed in the same tissue or involved in the same biological pathway have increased SSM values.</p> <p>Conclusions</p> <p>Using unbiased clustering of genes, Simple Shared Motifs analysis constitutes an original contribution to provide a clearer definition of expression networks.</p
    corecore